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Allvac 718

Introduction

Allvac 718 is a precipitation-hardenable nickel-chromium alloy. This material has been widely
used for aerospace applications due to its excellent creep-rupture strength at temperatures up to 700
C. This alloy also combines a very good corrosion resistance and high strength with an excellent
weldability. The understanding of mechanical and microstructural behavior during high temperature
deformation is very important for the forming processes of this alloy. In this investigation, flow
behavior of A.llvac 718 was studied by conducting compression tests at various temperatures and
strain rates. Constitutive relations were determined from the flow behavior and then, a dynamic
material modeling for this alloy was performed. Thus, the optimum processing condition in terms of
temperature and strain rate were determined. Microstructural changes during high temperature
deformation were also characterized to aid process design engineers to select processing conditions in
terms of resulting microstructure.

Experimental Procedure

The material used in this investigation was commercially available Allvac 718, solution treated
at 1024 C for one hour, water quenched, then aged at 788 C for six and half hours and air cooled.
The typical microstructure of the as-received materials consists of equiaxed twinned grains with an
average size of 54 [im (5.2 ASTM) shown in Figure 1. The chemical composition is as follows (wt%)
with Fe as balance:

C S Mn Si Cr Mo Co Ti Al B Cu Ni P Cb Ta

.019 .0004 .06 .07 17.65 2.90 .25 .94 .52 .004 .05 51.67 .004 5.07 .01

Cylindrical compression test specimens with a diameter of 12.7 mm and a height of 15.9 mm
were machined from the bars. Isothermal compression tests were conducted on an MTS testing
machine in a vacuum chamber. The test matrix was as follows:

Temperature, C (F): 850 (1562), 900 (1652), 950 (1742), 1000 (1832), 1050 (1922), 1100 (2012),
and 1150 (2102);

Strain rate, s-1: 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5 and 20.

Load and stroke data from the tests were acquired by a computer and later converted to true
stress-true strain curves. Immediately after the compression test, the specimens were quenched with
forced helium gas in order to retain the deformed microstructure. Longitudinal sections of the
specimens were examined by optical microscopy. The photomicrographs presented were taken from
the center of the longitudinal section of the specimens.

Results

Table I shows a list of the figures, test conditions and the observed microstructures. The true
stress-true strain flow curves with selective corresponding deformed microstructure are shown in
Figure 2 to Figure 57. True stress versus strain rate was plotted in log-log scale in Figure 58 at a true
strain of 0.5. The slope of the plot gives the strain rate sensitivity m, which is not constant over the
range of strain rate tested. Log stress vs. I/T at the same true strain is shown in Figure 59. A
processing map at this strain was developed and is shown in Figure 60. The optimum processing
condition from the map can be obtained by selecting the temperature and strain rate combination
which provides the maximum efficiency in the stable region. This condition is approximately 1025 C
and 10-3 s-1 for this material.

I I II I I IIIII



Table 1. List of figures, testing conditions and microstructural observations for Allvac 718-OP

Figure Temperature I Strain Rate Microstructure Page
No C (F) s-1  Optical Microscopy No

I As received Equiaxed twinned grains with a fairly uniform grain size P
of 54 prm (5.2 ASTM). There is also presence of (less
than I %) precipitates with size ranging from 1-15 pm.

2 850 (1562) 0.001 Elongated grains present in the microstructure show 6
mechanical working of the material.

3 850 (1562) 0.01 7
4 850 (1562) 0.05 Elongated grains as above. The deformed grains show 8

slip lines and grain boundary serrations, a precursor to
necklacing that is attributed to the onset of DRX.

5 850 (1562) 0.1 Elongated grains as above showing an extensive amount 9
of slip lines. The microstructure shows necklacing and
some (~-5%) very fine recrystallized grains (-0.5pm)

6 850 (1562) 0.5 10
7 850 (1562) 1 Elongated grains as above. There is more (-15%) 11

recrystallization at the grain and twin boundaries.
8 850 (1562) 5 Excessively deformed grains which show serrations at the 12

grain boundaries and ~15% recrystallization.
9 850 (1562) 20 Excessively deformed grains as above. The 13

microstructure has a larger amount (-40%) of
recrystallization. Possibly due to high adiabatic heating
induced by the higher strain rate.

10 900 (1652) 0.001 Elongated grains as in Figure 2. The deformed grains 14
have serrated boundaries and show necklacing (-3-5%
recrystallization). The strained grains have a substructure
(low angle grain boundaries)..

11 900 (1652) 0.01 Same as above with higher amount of recrystallization. 15
12 900 (1652) 0.05 16
13 900(1652) 0.1 Excessively deformed grains showing some (-15%) 17

recrystallization at the grain boundaries (with very small
grains -0.5 im).

14 900(1652) 0.5 18
15 900 (1652) 1 Excessively deformed grains showing some necklacing (- 19

10%) concentrated at slip lines with recrystallized small
grains (- 2 to 5 [pm in size).

16 900 (1652) 5 20
17 900 (1652) 20 Excessively deformed grains with -60% recrystallization 21

(small grains are -0.5-2pm in size).
18 950 (1742) 0.001 -5% elong-ited grains and -95% recr stallized equiaxed 22

grains.
19 950 (1742) 0.01 23
20 950 (1742) 0.05 -30% elongated grains showing twins and substructure. 24

-70% recrystallized equiaxed grains with a fairly uniform
size (-5pm).

21 950 (1742) 0.1 -65% recrystallized equiaxed grains with a uniform size 25
(-4 pm).

22 950 (1742) 0.5 -40% of the microstructurc contains elongated grains. 26
-60% recrystallized equiaxed grains have an average
grain size of 3.5pm.

2
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23 950 (1742) 1 -65% elongated grains showing substructure formation. 27
35% recrystallized grains with a non uniform size grain
size (average size -3pm).

24 950 (1742) 5 -40% elongated grains showing slip lines and -60% 28
recrystallized equiaxed grains with a size of -3pm.

25 950 (1742) 20 -20% elongated grains, a majority of the grains have a 29
sabstructure. The new recrystallized equiaxcd grains
(80%) have an average size of 2.5 pm.

26 1000 (1882) 0.001 100% recrystallized equiaxed grains with non-uniform 30
size (duplex). The larger grains (40-45%) have a grain
size of -13pm and some of them have a substructure.
The smaller grains have a size of 4.5pm.

27 1000 (1882) 0.01 100% recrystallized equiaxed grains wvith a non-uniform 31
_grain size (average size -14pm).

28 1000 (1882) 0.05 32
29 1000 (1882) 0.1 -90% recrystallized equiaxed grains with a duplex size. 33

The average grain size is -12ptm.(-25% larger grains).
The elongated grains (-10%) show a substructure.

30 1000(1882) 0.5 34
31 1000 (1882) 1 -90% recrystallized equiaxed grains with a non-uniform 35

size (average -8 pm). The larger grains have an average
size of 15pm.

32 1000 (1882) 5 36
33 1000 (1882) 20 -85% recrystallized equiaxed grains with a non-uniform 37

size (average -7 pm). The deformed grains have an
aspect ratio of 3.2 and some show a substructure.

34 1050 (1922) 0.001 100% recrystallized equiaxed grains with a non-uniform 38
size (average -31 pm). There are some (-8%) new
deformed grains showing a substructure. Note that this

_temperature is slightly above the 5 solvus.
35 1050 (1922) 0.01 39
36 1050 (1922) 0.05 100% recrystallizcd equiaxed grains with an average size 40

of -20pm. There are -3 - 5% new deformed grains.
37 1050 (1922) 0.1 41
38 1050(1922) 0.5 100% recrystallized equiaxed grains with an average 42

grain size of 18 pm. A few (<2%) new deformed grains
are present.

39 1050 (1922) 1 100% recrystallized grains with an average size of 15 pm. 43
The amount of new deformed grains is less than 1%.

40 1050 (1922) 5 100% recrystallized "quiaxed grains with an average size 44
of 12pm. New deformed grains were not observed.

41 1050 (1922) 20 Same as above, but the grain size is approximately 12 45
____ __ _ ____ ____ ___ ____ __ m.

42 1100(1212) 0.001 100% recrystallized grains with a fairly regular size 46
(-63.8 pm). Approximately 5% of the new equiaxed
grains show the presence of a substructure.

43 1100(1212) 0.01 100% recrystallized equiaxed grains with an average 47
grain size of 39.5 aim.

44 1100(1212) 0.05 48
45 1100(1212) 0.1 100% recrystallized equiaxed grains wvith a non-uniform 49

size (average of 32 ptm).
46 1100 (1212) 0.5 _ 50

3



47 1100(1212) 1 100% recrystallized equiaxed grains with a non-uniformn 51
size (average of 30 ptm).

48 1100(1212) 5 52
49 1100 (1212) 20 100% recrystallized equiaxed grains wvith a non-uniform 53

size (average of 25 ptm).
50 1150 (2102) 0.001 100% recrystallized equiaxed grains with a non-uniform 54

size (average -136 gm). The grain size range was 30-
350 pm. Some of the new grains (-10%) show the
presence of a substructure.

51 1150(2102) 0.01 55
52 1150 (2102) 0.05 100% recrystallized equiaxcd grains with a non-uniform 56

size (average -65 pm).
53 1150 (2102) 0.1 Same as above, but the grain size is -58 pm. 57
54 1150(2102) 0.5 58
55 1150 (2102) 1 Same as above, but the average grain size is -50 pm. 59
56 1150 (2102) 5 Same as above, but the average grain size is -48 ptm. 60
57 1150(2102) 20 Same as above. 61

4
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Figure 1. As-received microstructure of Ailvac 718-OP.
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Figure 3. True stress-true strain curve, 850 C and 0.01 s
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Figure 4. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 850 C and 0.05 s-1.
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Figure 5. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 850 C and 0.1 s-
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Figure 6. True stress-true strain curve, 850 C and 0.5 s-i
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Alivac 71 B-OP 850 C 5.05-1
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Figure 8. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 850 C and 5 s-1.
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Figure 9. True stress-true strain curve and an optical micrograph from the center of the compressed

sample cut through the compression axis, 850 C and 20 s-1

13
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AIlvac 71 8-OP 900C 0.01 s-C
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Figure 11. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 900 C and 0.01 s-1.
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Figure 12. True stress-true strain curve, 900 C and 0.05 s -1
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AlIvac 71 8-OP 900 C 0.1 s'
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Figure 13. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 900 C and 0. 1 s-1
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Allvac 71 8-OP 900 C o,5s-I
520

420

a-

1- 320
U3

4 220

120
S120

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

True Strain

Figure 14. True stress-true strain curve, 900 C and 0.5 s-1.
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AlIvac 71 B-OP 900 C
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Figure 15. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 900 C and I s-1.
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AIlvac 71 8-OP 900 C 5.0 s-1
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Figure 16. True stress-true strain curve, 900 C and 5 s-1.



Allvac 71 8-OP 900 C 20.0 s-1
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Figure 17. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 900 C and 20 s-1
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Figure 18. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 0.00 1 s-
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Figure 19. True stress-true strain curve, 950 C and 0.01 s-1 .
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AIlvac 71 8-OP C50 0.05-
300

250

a_ 200

U)k
c• 1 50

50

50 -50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

True Strain

Figure 20. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 0.05 s-1
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Figure 2 1. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 0. 1 s-1 .
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Al~vac 71 8-OP 950 C O.5s-I
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Figure 22. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 0.5 s-1.
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AIlvac 71 8-OP 950C 5.0-I
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Figure 24. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 5 s-
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Figure 25. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 20 s-1
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Figure 26. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and 0.001 s-1.
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Figure 28. True stress-true strain curve, 1000 C and 0.05 s-1.
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Figure 29. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and 0. 1 s-1

33



AIIvac 71 8-OP 1000 C
350 , , . . , .

300

S 250

200
(/n

4-' 150

50

bI)

L- 1 00

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

True Strain

Figure 30. True stress-true strain curve, 1000 C and 0.5 s-1.
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Figure 32. True stress-true strain curve, 1000 C and 5 s-.
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Figure 33. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and 20 s-1 .
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Figure 34. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1050 C and 0.001 s-1
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Figure 35. True stress-true strain curve, 1050 C and 0.01 s- 1.
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Figure 37. True stress-true strain curve, 1050 C and 0.1 s" 1 .
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Figure 39. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1050 C and I s-1
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Figure 43. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1100 C and 0.01 s-
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Figure 44. True stress-true strain curve, 1100 C and 0.05 s-.
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Figure 46. True stress-true strain curve, 1 100 C and 0.5 s-.
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Figure 48. True stress-true strain curve, 1100 C and 5 s-.
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Figure 49. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1100 C and 20 s-

53



Al~vac 71 8-OP 1150 C 0.001 -

.40 *

32

24

a) 16
(D

D

0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0ý9

True Strain

X.,.
. ..................

ý04.

F0ý

Figue 5. Tre sres-tru staincurv an anoptial icrgrap frm te ceterof he cmprsse

sapecu houhtecopesinais 10C n . 01s

54



AlIvac 71 8-OP 1150 C oxoi s-1

75

6.0

a-

.--- ' 45
CD)
LI)
4-1

60 30

15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

True Strain

Figure 51. T'-uz otress-true strain curve, 1150 C and 0.01 s-1 .

55



AlIvac 71 B-OP 1150 C oo-
120 *

100

80

U)
(D Q 60
k

40

20

0.0 0.1 0.2 0.3 0A 0.5 0.6 0.7 0.8 0.9

True Strain

sapect thrug the copeso ai,15Cad00

.- 7 - ~" 56



AlIvac 71 8-OP 1150 C 01

1200

10

a_ 80

60

40

20

20

0.0 0.1 0.2- 0.3 0.4 0.5 0.6 0.7 0.8 0.9

True Strain

1 00

x-I

Figure~ ~ ~ ~ ~ 53 Tresrs-resri uv.ada pia irgahfomtecne ftecmrse

sa pl cut thog hNopeso\ai,15 n .1s

57



AIlvac 71 8-OP 1150 C 0.5-I1
200

170

n 140

m 110
Cn

U1)

H- 50

20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

True Strain

Figure 54. True stress-true strain curve, 1150 C and 0.5 s-.
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Figure 58. Effect of strain rate on stress in log-log scale at a true strain of 0.5 for Allvac 718-OP.
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Figure 59. Effect of temperature on stress at a true strain of 0.5 for Allvac 718-OP.
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Figure 60. Processing map of Alivac 71 8-OP at a true strain of 0. 5.
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Summary

Compression tests have been performed on Allvac 718-OP over a wide range of temperatures
and strain rates. The experimental conditions used in this work are representative of those used in
metal forming practices. From the stress-strain curves, the flow behavior was characterized and a
processing map indicating the optimum processing condition was generated. This condition is 1025 C
and 10-3 s-1.

The deformed microstructures were characterized from the quenched specimens by optical

microscopy and are presented for selective testing conditions under the stress-strain curves..

Implementation of Data Provided by the Atlas of Formability

The Atlas of Formability program provides ample data on flow behavior of various important
engineering materials in the temperature and strain rate regime commonly used in metalworking
processes. The data are valuable in design and problem solving in metalworking processes of
advanced materials. Microstructural changes with temperature and strain rates are also provided in
the Bulletin, which helps the design engineer to select processing parameters leading to the desired
microstructure.

The data can also be used to construct processing map using dynamic material modeling
approach to determine stable and unstable regions in terms of temperature and strain rate. The
temperature and strain rate combination at the highest efficiency in the stable region provides the
optimum processing condition. This has been demonstrated in this Bulletin. In some metalworking
processes such as forging, strain rate varies within the workpiece. An analysis of the process with
finite element method (FEM) can ensure that the strain rates at the processing temperature in the
whole workpiece fall into the stable regions in the processing map. Furthermore, FEM analysis with
the data from the Atlas of Formability can be coupled with fracture criteria to predict defect
formation in metalworking processes.

Using the data provided by the Atlas of Formability, design of metalworking processes,
dynamic material modeling, FEM analysis of metalworking processes, and defect prediction are
common practice in Concurrent Technologies Corporation. Needs in solving problems related to
metalworking processes can be directed to Dr. Prabir K. Chaudhury, Manager of Forming
Department, by calling (814) 269-2594.
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